
The rocky road to building
my first R package

Lucy Morgan

What you need

 You need a clear view of what you want your package to do

1. Is it just for your own use?

2. How might other people use it?

3. What inputs will it need?

4. And so on…

TIP 1

Most people come to write their first package when they have some code
they want to share and make available. This can make building your first
package stressful… perhaps start with a toy package!

Things you actually need

 There are two packages you’ll need to install to create a basic Rpackage

1. devtools

2. roxygen2

For installation use

 install.packages(“devtools”)

 devtools::install_github(“klutometis/roxygen”)

And to load use library(“Package Name”)

Create the package directory

 File > New Project … > New Directory

 R Package

 Name your package and where you want to put
it. The source files are the .R files that contain
your code.

OR use package.skeleton(“newpackagename”)

The package directory

DESCRIPTION

The description file holds important
information about the package for example
the version, the maintainer and the license.

This DESCRIPTION file can be found by a user
by clicking on the package name.

It is displayed on the main package page
along with the package manuals, the version
and package description.

Manual
The manual contains information on the functionality of your package and
also allows you to give example

TIP 2

 Briefly filling in the package manual file before you start writing your
code can help you plan what your code should do, and keep on track.

R

 The R directory of the package is where all R code should be put.

TIP 3

 Although this is a very simple function most functions are not and it helps
to modularise your code into testable chunks.

roxygen
 Roxyen allows you to speed up your package building.

 Speeds up manual building and builds the namespace file.

 Using #’ tells R it is an roxygen comment

When you’ve added all your comments use the devtools function document() to
build the namespace and manual files.

NOTE! Only use @export in files you want to be accessible to users

https://kbroman.org/pkg_primer/pages/docs.html

https://kbroman.org/pkg_primer/pages/docs.html

Install your package

 Set your working directory to the file which contains your package folder
– for me that is the folder that contains the folder “Variance”

 Install(“Variance”)

 Test your function/s -> Variance(c(1,2,3,4))

 Check your manual/s -> ?Variance

 For your package to appear in the package list you need to compile it

You can either use the build tool bar or ctrl+shift+b.

Helpful Resources

I am definitely a novice when it comes to building packages but simple
packages can save you a lot of time. Here are some sources that helped me
put my first package together

 https://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/
<- a blog post (very simple and straight to the point). Small functions
can save you time

 http://web.mit.edu/insong/www/pdf/rpackage_instructions.pdf <-
detailed instructions

 https://
support.rstudio.com/hc/en-us/articles/200486488-Developing-Packages-
with-RStudio
 <- R support pages

https://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/
https://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/
https://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/
http://web.mit.edu/insong/www/pdf/rpackage_instructions.pdf
https://support.rstudio.com/hc/en-us/articles/200486488-Developing-Packages-with-RStudio
https://support.rstudio.com/hc/en-us/articles/200486488-Developing-Packages-with-RStudio
https://support.rstudio.com/hc/en-us/articles/200486488-Developing-Packages-with-RStudio

	Slide 1
	What you need
	Things you actually need
	Create the package directory
	The package directory
	DESCRIPTION
	Manual
	R
	roxygen
	Install your package
	Helpful Resources

